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CoreModels
Flow Rates

A CORE LEARNING GOALS ACTIVITY FOR SCIENCE AND MATHEMATICS

Summary
Students use proportional reasoning and data analysis to
build a computer model to explore the dynamic
relationships in a model of rates of flow into and out of a
container. This model has many applications across a
variety of disciplines.
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LESSON OVERVIEW

Introduction
This lesson/model is highly recommended both for math teachers and for science teachers

in all fields.  As will be seen below, the lesson can be used effectively for a variety of content
applications, and at various points in a course sequence. One reason for the lesson’s power is its
wide range of applications, as shown by the following examples of analogous concepts which the
model serves to illuminate:

• A lake or pond, fed by one river or stream, and drained by another
(additional feed: rain)(additional drain: percolation to water table)

• An individual  cell’s water balance,  whether it is a plant cell trying to maintain turgor,
or a protist trying to pump water out to counter osmotic pressure

• A specific organ or cavity’s normal range of hydrostatic pressure
      (e.g., urine in a bladder, or cerebrospinal fluid in a mammalian dorsal cavity)
• An organism’s overall fluid balance
• Kinetics, relative reaction rates, and dynamic equilibrium in chemical reactions
• Thermal content of a solid body
• Nuclear binding energy,  fed by particle bombardment and drained by radioactive

decay
• How will the time needed to fill your bathtub be affected by an ill-fitting drain

stopper?
• How long will it take you to go broke if you spend more than you earn?
      (and pay 18% extra for everything as well)
• What kind of function has a rate of change which is proportional to itself?

Another reason for the Flow Rate lesson’s power is the students’ very direct mental
mapping between concrete observations of the demonstration and mathematical modeling in the
software.  Not only is the symbol system of the software a close mimic of the apparatus, but
there is also the powerful advantage of real-time data analysis -- an advantage well-known from
CBL lab experience in teaching graphing.  With mathematical modeling, this real-time advantage
for teaching and learning math-science symbolism is taken to an even deeper cognitive level.

Teaching objectives

(a) to develop students’ proportional reasoning skills
(b) to develop students’ skills at building mathematical models
(c) to refresh students’ ability to derive linear equations from plots of apparently linear

phenomena
(d) to refresh students’ manual graphing abilities
(e) to introduce students to the use of computerized output graphs, and their advantages

over manual techniques, including real-time data display and analysis.
(f) to establish the properties of a basic inflow-reservoir-outflow model as the conceptual

template underlying a variety of natural and social processes.
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LESSON PLAN
        
MATERIALS:

• class set of student worksheets
• overhead transparencies of student worksheets
• STELLA software
• flow rate demo set-up : 

glassware (largest available separatory funnel,
50-ml graduated buret, and graduated flask);
large ring stand;  2 rings;  clamps;  supply of
brightly colored water

PREP TIME: 1 hour

CLASS TIME: 70-90 minutes

Flow Model - Teacher Notes

In the process of doing this activity, the students will discover that the outflow rate
is not constant. For students who are not yet in Algebra II, we will assume that the
relationship between the outflow rate and the buret volume is linear. Those
students should follow the activity as it is written. For more advanced students, you
may wish to introduce the ideas explained below.

1. Is the relationship of the outflow rate to the burette volume really linear?
NO

2. What is the true relationship?
outflow rate = k*sqrt(volume)

3. Why do the points look like they are on a line?
The curvature is not noticeable until the burette is almost empty, and 
collecting data for that condition is very difficult.

4. If my students do not know how to curve-fit a power function (y = a*x^0.5), is it 
acceptable to continue to use the linear equation (y = mx + b)?

YES, if you emphasize that the line is only an estimate of the relationship. 
Since the point of the lab is the existence of a dependency between the 
outflow rate and the burette volume, the line is adequate.

5. How do you know that the function is a power function?

Let’s look for some theoretical background on this problem. The potential energy of
the system at any point in time is mass*gravity*height or mgh. The kinetic energy
transported out of the burette at any point in time is 1/2*mass*velocity2 or 1/2mv2.
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Assuming all of the potential energy is converted into kinetic energy (conservation
of energy), set 1/2mv2 = mgh. Simplify to v2 = 2gh, where velocity is in m/s, gravity
is in m/s2 and height is in m. Since we are using mL and minutes, the appropriate
conversions must be made.

v2 = 2gh (m/s)
v = sqrt(2*9.8*h) (m/s)
v = sqrt(2*980*h) (cm/s)
v = 60*sqrt(2*980*h) (cm/min)

Assume the burette is a perfect cylinder volume = πr2h
πr2*v = πr2*60*sqrt(2*980*h) (cm3/min)
vel = πr2*60*sqrt(2*980*h) (mL/min)
vel = 2656*πr2*sqrt(volume/πr2) (mL/min)
vel= 2656*sqrt(πr2)*sqrt(volume) (mL/min)
vel = 4708*r*sqrt(volume) (mL/min)

This shows that the outflow (velocity) is proportional to the square root of the
burette volume.

Sample Data

Buret vol
(ml)

50

Elapsed
Time

(s)
0

Volume
Change

(ml)

Time
Change

(s)

Avg.
Outflow

Rate
(mL/s)

Avg.
Outflow

Rate
(mL/min)

Buret
Volume
Midpoint

(mL)

45 35 5 35 0.143 8.571 47.5

40 75 5 40 0.125 7.500 42.5

35 124 5 49 0.102 6.122 37.5

30 179 5 55 0.091 5.455 32.5

25 244 5 65 0.077 4.615 27.5

20 306 5 62 0.081 4.839 22.5

15 381 5 75 0.067 4.000 17.5

10 470 5 89 0.056 3.371 12.5

5 575 5 105 0.048 2.857 7.5

At first glance, there appears to be a linear relationship. The equation of a line can be
found in a number of ways. Those students with a graphing calculator or familiar
with a program like Graphical Analysis can perform linear regression. Using the
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sample data, the equation y (outflow in mL/min) = 0.134x (burette volume in mL) +
1.58 has a mean square error of 0.165 - that seems like an excellent fit.

Note: Students not having access to regression analysis tools may determine a linear
equation by sketching a line that is close to most data points. Using the estimated
coordinates of the endpoints (x1, y1) and (x2, y2) of the line, the student can find m,
the slope of the line, by using m=(y1-y2)/(x1-x2). Using m and (x1,y1) the student can
substitute into y1 = m*x1 + b to find b, the y-intercept. With m and b, the equation is
y = mx+b. The mean square error is a bit tedious to perform by hand - for every data
point, the difference between its y-coordinate and the corresponding y-coordinate on
the line must be calculated and squared. Sum those squares and divide by the
number of points and you will have the mean square error.

In either case, if we look more carefully, we are alarmed that the outflow does not
approach zero as the burette empties. At volume = 0, the outflow would be 1.58
mL/min. Is this just a result of error in data collection?

Using a graphing calculator or Graphical Analysis (or similar software), choose the
power function y = a*x^b. With the sample data, y = 0.828*x^0.565 with a mean
square error of 0.324. It is reassuring to see that the coefficient of the power function
is close to 0.5 (i.e. square root). Next, try a power fit with a fixed exponent of 0.5. This
results in y = 1.05*x^0.5 with a mean square error of 0.408.

Why do we get a larger error here than with the linear regression? It appears that we
should collect more data. If we continue the experiment so that the burette becomes
nearly empty and if we start measuring the time for one mL decrements rather than
5 mL ones, we will see the sharp downward trend in the outflow rate as we near
zero volume. If we then do both the linear and power curve fits, we will see a
smaller error for the power function. Of course, this is still a simplification of the
problem. We have ignored forces such as friction, but the influence of those forces
would only impact the coefficient of the function, not the exponent.

It is important to note that the data alone were insufficient to determine the best
curve fit. Actually, the ‘best’ answer (power) turned out to have more error than
another answer (linear) that was discarded. How do we explain this seeming
contradiction to our students? This is an excellent opportunity to point out the need
for an extensive set of data points and the importance of the extremities of the data
set. This example also reinforces the need to look to scientific theory for guidance.

If your students still insist that the best fit is the function with the least error, have
them try y = a*x^b + c with the sample data. The resulting function is y =
0.00336*x^1.92 + 2.96 with a mean square error of 0.0751. Based on error alone, this
appears to be a better fit than the line was. But, just as with the linear fit, the outflow
rate does not approach zero as the burette empties! Clearly, this function is not the
answer.


