Non Point Source Pollution in an Urban Area



Increased Runoff. The porous and varied terrain of natural landscapes like forests, wetlands, and grasslands trap rainwater and snowmelt and allow it to slowly filter into the ground. Runoff tends to reach receiving waters gradually. In contrast, nonporous urban landscapes like roads, bridges, parking lots, and buildings don't let runoff slowly percolate into the ground. Water remains above the surface, accumulates, and runs off in large amounts.

Cities install storm sewer systems that quickly channel this runoff from roads and other impervious surfaces. Runoff gathers speed once it enters the storm sewer system. When it leaves the system and empties into a stream, large volumes of quickly flowing runoff erode stream banks, damage streamside vegetation, and widen stream channels. In turn, this will result in lower water depths during non-storm periods, higher than normal water levels during wet weather periods, increased sediment loads, and higher water temperatures. Native fish and other aquatic life cannot survive in urban streams severely impacted by urban runoff.

Increased Pollutant Loads. Urbanization also increases the variety and amount of pollutants transported to receiving waters. Sediment from development and new construction; oil, grease, and toxic chemicals from automobiles; nutrients and pesticides from turf management and gardening; viruses and bacteria from failing septic systems; road salts; and heavy metals are examples of pollutants generated in urban areas. Sediments and solids constitute the largest volume of pollutant loads to receiving waters in urban areas.

When runoff enters storm drains, it carries many of these pollutants with it. In older cities, this polluted runoff is often released directly into the water without any treatment. Increased pollutant loads can harm fish and wildlife populations, kill native vegetation, foul drinking water supplies, and make recreational areas unsafe.
 

From EPA
Pointer No. 7
EPA841-F-96-004G