position_of_object(t) = position_of_object(t - dt) + (change_in_position) * dt INIT position_of_object = radius_of_the_Earth change_in_position = velocity_of_object velocity_of_object(t) = velocity_of_object(t - dt) + (change_in_velocity) * dt INIT velocity_of_object = 0 change_in_velocity = acceleration acceleration = -force_on_object/mass_object force_on_object = 6.67e-11*mass_Earth*mass_object* position_of_object/ (radius_of_the_Earth^3) mass_Earth = 6e24 mass_object = 1 radius_of_the_Earth = 6.4e6 Time Specs:Duration 0-10000, dT=1 Integration Method = Runge-Kutta 2 Time Specs Settings Range: 0-10000; dt = 1; Integration Method = Runge-Kutta 2
position_of_object(t) = position_of_object(t - dt) + (change_in_position) * dt INIT position_of_object = radius_of_the_Earth change_in_position = velocity_of_object velocity_of_object(t) = velocity_of_object(t - dt) + (change_in_velocity) * dt INIT velocity_of_object = 0 change_in_velocity = acceleration acceleration = -force_on_object/mass_object force_on_object = 6.67e-11*mass_Earth*mass_object* position_of_object/ (radius_of_the_Earth^3) mass_Earth = 6e24 mass_object = 1 radius_of_the_Earth = 6.4e6 Time Specs:Duration 0-10000, dT=1 Integration Method = Runge-Kutta 2