position_1(t) = position_1(t - dt) + (rate_of_change_of_pos_1) * dt INIT position_1 = initial_position_1 rate_of_change_of_pos_1 = velocity_1 position_2(t) = position_2(t - dt) + (rate_of_change_of_pos_2) * dt INIT position_2 = initial_position_2 rate_of_change_of_pos_2 = velocity_2 velocity_1(t) = velocity_1(t - dt) + (rate_of_change_of_vel_1) * dt INIT velocity_1 = 0 rate_of_change_of_vel_1 = accel_1 velocity_2(t) = velocity_2(t - dt) + (rate_of_change_of_vel_2) * dt INIT velocity_2 = 0 rate_of_change_of_vel_2 = accel_2 accel_1 = net_force_1/mass_1 accel_2 = net_force_2/mass_2 center_of_mass = (initial_position_1 * mass_1 + initial_position_2 * mass_2)/(mass_1 + mass_2) distance_between = ABS(position_2-position_1) grav_force = 6.67E-11*(mass_1*mass_2*distance_between)/ ((radius_1^2)+(distance_between^2))^(3/2) initial_position_1 = -0.2 initial_position_2 = .2 mass_1 = 6e6 mass_2 = 6e6 net_force_1 = grav_force*(center_of_mass-position_1)/ ABS(center_of_mass-position_1) net_force_2 = grav_force*(center_of_mass-position_2)/ ABS(center_of_mass-position_2) radius_1 = .05