Ball and Ring Model  

[Diagram Level | Equations Level | Graphs ]




position_1(t) = position_1(t - dt) + (rate_of_change_of_pos_1) * dt
INIT position_1 = initial_position_1
rate_of_change_of_pos_1 = velocity_1

position_2(t) = position_2(t - dt) + (rate_of_change_of_pos_2) * dt
INIT position_2 = initial_position_2
rate_of_change_of_pos_2 = velocity_2

velocity_1(t) = velocity_1(t - dt) + (rate_of_change_of_vel_1) * dt
INIT velocity_1 = 0
rate_of_change_of_vel_1 = accel_1

velocity_2(t) = velocity_2(t - dt) + (rate_of_change_of_vel_2) * dt
INIT velocity_2 = 0
rate_of_change_of_vel_2 = accel_2

accel_1 = net_force_1/mass_1
accel_2 = net_force_2/mass_2

center_of_mass = (initial_position_1 * mass_1 + 
                 initial_position_2 * mass_2)/(mass_1 + mass_2)

distance_between = ABS(position_2-position_1)
grav_force = 6.67E-11*(mass_1*mass_2*distance_between)/
             ((radius_1^2)+(distance_between^2))^(3/2)

initial_position_1 = -0.2
initial_position_2 = .2

mass_1 = 6e6
mass_2 = 6e6

net_force_1 = grav_force*(center_of_mass-position_1)/
              ABS(center_of_mass-position_1)
net_force_2 = grav_force*(center_of_mass-position_2)/
              ABS(center_of_mass-position_2)

radius_1 = .05
Time Specs Settings
Range: 0-60; dt = 0.05; Integration Method = Runge-Kutta 4



Graph of Position



Graph of Center of Mass



Graph of Acceleration

Home | Contact | Site Map | Search