Projectile Motion Model

During the study of 2-dimensional motion, students are asked to build a model of projectile motion. The comparative graph (graph 2) shows the effect of the launch angle (30, 45 or 60 degrees) on the path of the projectile. After building the basic model, students can add other factors such as drag, a wind in the horizontal direction, or an initial positive launch height.

 THE MODEL

[Diagram Level | Equations Level | Graphs ] Horizontal_Position(t) = Horizontal_Position(t - dt) + (Rate_of_Change_of_Horiz_Pos) * dt
INIT Horizontal_Position = 0
Rate_of_Change_of_Horiz_Pos = Init_Horizontal_Velocity
Vertical_Position(t) = Vertical_Position(t - dt) + (Rate_of_Change_of_Vert_Pos) * dt
INIT Vertical_Position = Init_Vertical_Position
Rate_of_Change_of_Vert_Pos = Vertical_Velocity
Vertical_Velocity(t) = Vertical_Velocity(t - dt) + (Rate_of_Change_of_Ver_Vel) * dt
INIT Vertical_Velocity = Init_Vertical_Velocity
Rate_of_Change_of_Ver_Vel = g
g = -9.8 {m/s^2}
Init_Horizontal_Velocity = Init_Velocity*COS(Launch_angle*PI/180)
Init_Velocity = 100 {m/s}
Init_Vertical_Position = 0
Init_Vertical_Velocity = Init_Velocity*SIN(Launch_angle*PI/180)
Launch_angle = 30
##### Time Specs Settings
Standard:Range: 0-30 ; dt = 0.25; Integration Method = Euler's  Home | Contact | Site Map | Search