Coulomb's Law Model

By building this model from the Universal Gravitation model, students realize the similarities and differences between the two.

 THE MODEL

[ Diagram Level | Equations Level | Graphs ]

position_1(t) = position_1(t - dt) + (rate_of_change_of_pos_1) * dt
INIT position_1 = Init_position_1
rate_of_change_of_pos_1 = velocity_1

position_2(t) = position_2(t - dt) + (rate_of_change_of_pos_2) * dt
INIT position_2 = Init_position_2
rate_of_change_of_pos_2 = velocity_2

velocity_1(t) = velocity_1(t - dt) + (rate_of_change_of_vel_1) * dt
INIT velocity_1 = 0
rate_of_change_of_vel_1 = accel_1

velocity_2(t) = velocity_2(t - dt) + (rate_of_change_of_vel_2) * dt
INIT velocity_2 = 0
rate_of_change_of_vel_2 = accel_2

accel_1 = -net_force/mass_1
accel_2 = net_force/mass_2

charge_1 = 1e-4
charge_2 = 1e-4

Distance_between = position_2-position_1

Init_position_1 = -1
Init_position_2 = 1

mass_1 = 1
mass_2 = 1

net_force = 9e9*(charge_1*charge_2)/(Distance_between)^2
##### Time Specs Settings
Range: 0-1; dt = 0.01; Integration Method = Runge-Kutta 4

 Home | Contact | Site Map | Search