Projectile Motion Activity  

In this activity, students use systems modeling to represent the components of velocity and displacement in two dimensions. They recognize that there is now a displacement in two dimensions, that the velocity at an angle has two components, and that by varying the angle, they can vary the distance traveled in the horizontal direction.

TEACHER RESOURCES
Teacher Materials
Student Activity
Learning
   Goals/Standards
COMPUTER MODEL
STELLA Version
Web-based Simulation
COMPUTER MODEL
Vensim Version
THE MODEL DIAGRAM

THE EQUATIONS

disp_x(t) = disp_x(t - dt) + (Rate_of_change_of_x_displacement) * dt
INIT disp_x = 0
Rate_of_change_of_x_displacement = IF(disp_y>=0.2) then (X_VELOCITY) else 0
disp_y(t) = disp_y(t - dt) + (Rate_of_Change_of__Y_displacement) * dt
INIT disp_y = 0
Rate_of_Change_of__Y_displacement = Y_VELOCITY
X_VELOCITY(t) = X_VELOCITY(t - dt)
INIT X_VELOCITY = initial_x_velocity
Y_VELOCITY(t) = Y_VELOCITY(t - dt) + (Rate_of_Change_of__Y_Velocity) * dt
INIT Y_VELOCITY = initial_y_velocity
Rate_of_Change_of__Y_Velocity = Acceleration
Acceleration = -9.8 {m/s/s}
angle_in_degrees = 0
angle_in_radians = angle_in_degrees*(PI/180)
Initial_Velocity = 100 {m/s}
initial_x_velocity = Initial_Velocity*COS(angle_in_radians)
initial_y_velocity = Initial_Velocity*SIN(angle_in_radians)

THE OUTPUT



Home | Contact | Site Map | Search