Basic Conservation of Heat  

This version of the specific heat model is an initial attempt to account for conservation of heat. Students now see that the heat lost by the metal is gained by the water. A constant (so that heat transfer is not immediate) is added. In the follow-up model this constant is expanded into several other values.

THE MODEL
Vensim Version STELLA Version

[Diagram Level | Equations Level | Graphs ]



Temp_Sample(t) = Temp_Sample(t - dt) + (- Temp_Change_Sample) * dt
INIT Temp_Sample = Init_Temp_Sample
Temp_Change_Sample = Change_in_Energy/(mass_sample*Specific_Heat_Sample)
Temp_Water(t) = Temp_Water(t - dt) + (Temp_Change_Water) * dt
INIT Temp_Water = Init_Temp_Water
Temp_Change_Water = Change_in_Energy/(mass_water*Specific_Heat_Water)
Transferable_Energy_Sample(t) = 
       Transferable_Energy_Sample(t - dt) + (- Change_in_Energy) * dt
INIT Transferable_Energy_Sample = 
       mass_sample*Init_Temp_Sample*Specific_Heat_Sample {J}
Change_in_Energy = 5*(Temp_Sample-Temp_Water)
Transferable_Energy_Water(t) = 
       Transferable_Energy_Water(t - dt) + (Change_in_Energy) * dt
INIT Transferable_Energy_Water = 
       mass_water*Specific_Heat_Water*Init_Temp_Water
Change_in_Energy = 5*(Temp_Sample-Temp_Water)
Init_Temp_Sample = 100
Init_Temp_Water = 20
mass_sample = 50 {g}
mass_water = 200 {g}
Specific_Heat_Sample = 0.89 {J/g C}
Specific_Heat_Water = 4.18 {J/g C}
Time Specs
Range: 0 to 60, dT = .25, Integration Method = Euler's Method



Home | Contact | Site Map | Search